3.3.6 \(\int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx\) [206]

3.3.6.1 Optimal result
3.3.6.2 Mathematica [B] (verified)
3.3.6.3 Rubi [A] (verified)
3.3.6.4 Maple [B] (verified)
3.3.6.5 Fricas [B] (verification not implemented)
3.3.6.6 Sympy [F]
3.3.6.7 Maxima [B] (verification not implemented)
3.3.6.8 Giac [F(-2)]
3.3.6.9 Mupad [F(-1)]

3.3.6.1 Optimal result

Integrand size = 28, antiderivative size = 122 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {(4-4 i) a^{5/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {4 i a^2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)} \]

output
(-4+4*I)*a^(5/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)) 
^(1/2))/d-4*I*a^2*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(1/2)-2/3*a*(a+I*a 
*tan(d*x+c))^(3/2)/d/tan(d*x+c)^(3/2)
 
3.3.6.2 Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(279\) vs. \(2(122)=244\).

Time = 4.05 (sec) , antiderivative size = 279, normalized size of antiderivative = 2.29 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a^2 \left (-15 \sqrt [4]{-1} a \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \tan ^{\frac {3}{2}}(c+d x) (-i+\tan (c+d x))-\frac {15 i \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) (i a \tan (c+d x))^{3/2} (-i+\tan (c+d x))}{\sqrt {a}}+2 \sqrt {1+i \tan (c+d x)} \left (\frac {6 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) (i a \tan (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}{a}+a \left (-1-8 i \tan (c+d x)+7 \tan ^2(c+d x)\right )\right )\right )}{3 d \sqrt {1+i \tan (c+d x)} \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}} \]

input
Integrate[(a + I*a*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(5/2),x]
 
output
(a^2*(-15*(-1)^(1/4)*a*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Tan[c + d*x] 
^(3/2)*(-I + Tan[c + d*x]) - ((15*I)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a 
]]*(I*a*Tan[c + d*x])^(3/2)*(-I + Tan[c + d*x]))/Sqrt[a] + 2*Sqrt[1 + I*Ta 
n[c + d*x]]*((6*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + 
I*a*Tan[c + d*x]]]*(I*a*Tan[c + d*x])^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/a 
+ a*(-1 - (8*I)*Tan[c + d*x] + 7*Tan[c + d*x]^2))))/(3*d*Sqrt[1 + I*Tan[c 
+ d*x]]*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])
 
3.3.6.3 Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.02, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3042, 4028, 3042, 4028, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan (c+d x)^{5/2}}dx\)

\(\Big \downarrow \) 4028

\(\displaystyle 2 i a \int \frac {(i \tan (c+d x) a+a)^{3/2}}{\tan ^{\frac {3}{2}}(c+d x)}dx-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 i a \int \frac {(i \tan (c+d x) a+a)^{3/2}}{\tan (c+d x)^{3/2}}dx-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4028

\(\displaystyle 2 i a \left (2 i a \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 i a \left (2 i a \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4027

\(\displaystyle 2 i a \left (\frac {4 a^3 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 218

\(\displaystyle 2 i a \left (\frac {(2+2 i) a^{3/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a (a+i a \tan (c+d x))^{3/2}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\)

input
Int[(a + I*a*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(5/2),x]
 
output
(-2*a*(a + I*a*Tan[c + d*x])^(3/2))/(3*d*Tan[c + d*x]^(3/2)) + (2*I)*a*((( 
2 + 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a 
*Tan[c + d*x]]])/d - (2*a*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x] 
]))
 

3.3.6.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4028
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*b*(a + b*Tan[e + f*x])^(m - 1)*((c + 
 d*Tan[e + f*x])^(n + 1)/(f*(m - 1)*(a*c - b*d))), x] + Simp[2*(a^2/(a*c - 
b*d))   Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0 
] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2]
 
3.3.6.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 369 vs. \(2 (100 ) = 200\).

Time = 0.96 (sec) , antiderivative size = 370, normalized size of antiderivative = 3.03

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (3 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )-3 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )+12 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{2}\left (d x +c \right )\right )+14 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+2 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{3 d \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(370\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (3 i \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )-3 \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )+12 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{2}\left (d x +c \right )\right )+14 i \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+2 \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{3 d \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(370\)

input
int((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/3/d*(a*(1+I*tan(d*x+c)))^(1/2)*a^2/tan(d*x+c)^(3/2)*(3*I*ln((2*2^(1/2)* 
(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(ta 
n(d*x+c)+I))*(I*a)^(1/2)*2^(1/2)*a*tan(d*x+c)^2-3*ln((2*2^(1/2)*(-I*a)^(1/ 
2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I 
))*(I*a)^(1/2)*2^(1/2)*a*tan(d*x+c)^2+12*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*t 
an(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2) 
*a*tan(d*x+c)^2+14*I*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a 
)^(1/2)*(-I*a)^(1/2)+2*(-I*a)^(1/2)*(I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x 
+c)))^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2 
)
 
3.3.6.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 408 vs. \(2 (92) = 184\).

Time = 0.24 (sec) , antiderivative size = 408, normalized size of antiderivative = 3.34 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\frac {8 \, \sqrt {2} {\left (4 \, a^{2} e^{\left (5 i \, d x + 5 i \, c\right )} + a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} - 3 \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - 3 \, \sqrt {-\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + \sqrt {-\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right ) + 3 \, \sqrt {-\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - \sqrt {-\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right )}{6 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(5/2),x, algorithm="fricas")
 
output
1/6*(8*sqrt(2)*(4*a^2*e^(5*I*d*x + 5*I*c) + a^2*e^(3*I*d*x + 3*I*c) - 3*a^ 
2*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 
 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - 3*sqrt(-32*I*a^5/d^2)*(d*e^(4*I* 
d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I 
*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x 
 + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sqrt(-32*I*a^5/d^2)*d*e^(I*d*x 
 + I*c))*e^(-I*d*x - I*c)/a^2) + 3*sqrt(-32*I*a^5/d^2)*(d*e^(4*I*d*x + 4*I 
*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2* 
I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) 
 + I)/(e^(2*I*d*x + 2*I*c) + 1)) - sqrt(-32*I*a^5/d^2)*d*e^(I*d*x + I*c))* 
e^(-I*d*x - I*c)/a^2))/(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + 
d)
 
3.3.6.6 Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}{\tan ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+I*a*tan(d*x+c))**(5/2)/tan(d*x+c)**(5/2),x)
 
output
Integral((I*a*(tan(c + d*x) - I))**(5/2)/tan(c + d*x)**(5/2), x)
 
3.3.6.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1072 vs. \(2 (92) = 184\).

Time = 0.46 (sec) , antiderivative size = 1072, normalized size of antiderivative = 8.79 \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(5/2),x, algorithm="maxima")
 
output
2/3*(2*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 
 1)*(((3*I + 3)*a^2*cos(3*d*x + 3*c) - (2*I + 2)*a^2*cos(d*x + c) + (3*I - 
 3)*a^2*sin(3*d*x + 3*c) - (2*I - 2)*a^2*sin(d*x + c))*cos(3/2*arctan2(sin 
(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + ((3*I - 3)*a^2*cos(3*d*x + 3*c) - 
 (2*I - 2)*a^2*cos(d*x + c) - (3*I + 3)*a^2*sin(3*d*x + 3*c) + (2*I + 2)*a 
^2*sin(d*x + c))*sin(3/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) 
)*sqrt(a) + 3*(2*(-(I + 1)*a^2*cos(2*d*x + 2*c)^2 - (I + 1)*a^2*sin(2*d*x 
+ 2*c)^2 + (2*I + 2)*a^2*cos(2*d*x + 2*c) - (I + 1)*a^2)*arctan2((cos(2*d* 
x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*ar 
ctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) - cos(d*x + c), (cos(2*d*x 
 + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arc 
tan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) - sin(d*x + c)) + (-(I - 1) 
*a^2*cos(2*d*x + 2*c)^2 - (I - 1)*a^2*sin(2*d*x + 2*c)^2 + (2*I - 2)*a^2*c 
os(2*d*x + 2*c) - (I - 1)*a^2)*log(cos(d*x + c)^2 + sin(d*x + c)^2 + sqrt( 
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*(cos(1/2 
*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))^2 + sin(1/2*arctan2(sin 
(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))^2) - 2*(cos(2*d*x + 2*c)^2 + sin(2* 
d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 
2*c), -cos(2*d*x + 2*c) + 1))*sin(d*x + c) + cos(d*x + c)*sin(1/2*arctan2( 
sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)))))*(cos(2*d*x + 2*c)^2 + sin(...
 
3.3.6.8 Giac [F(-2)]

Exception generated. \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(5/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Non regular value [0] was discarded 
 and replaced randomly by 0=[16]Warning, replacing 16 by -68, a substituti 
on variab
 
3.3.6.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{5/2}} \,d x \]

input
int((a + a*tan(c + d*x)*1i)^(5/2)/tan(c + d*x)^(5/2),x)
 
output
int((a + a*tan(c + d*x)*1i)^(5/2)/tan(c + d*x)^(5/2), x)